Welcome to

C++isfun
at Turbine/Warner Bros.!

Syllabus

1) First program and introduction to data types and control structures with
applications for games learning how to use the programming environment
2) Objects, encapsulation, abstract data types, data protection and scope

3) Basic data structures and how to use them, opening files and performing
operations on files

Mini Project 1 Due

4) Algorithms on data structures, algorithms for specific tasks, simple Al and
planning type algorithms, game Al algorithms

6) Event-oriented programming, model view controller, map reduce filter
Mini Project 2 Due

7) Basic threads models and some simple databases SQLIlite

8) Graphics programming, shaders, textures, 3D models and rotations

7) How to download an APl and learn how to use functions in that API, Windows
Foundation Classes

8) Designing and implementing a simple game in C++

9) Selected topics - depth controllers like the Microsoft Kinect

Mini Project 3 Due

10) Selected topics

11) Working on student projects

12) Final project presentations

Visual Studio 2012

http://www.microsoft.com/visualstudio/eng/downloads

Visual Studio Express 2012

Visual Studio Express 2012 products provide free
development tools for creating modern applications on
the latest platforms.

(#) Visual Studio Express 2012 for Web

(#) Visual Studio Express 2012 for Windows 8

(#) Visual Studio Express 2012 for Windows Desktop

(#) Visual Studio Express 2012 for Windows Phone

(#) Visual Studio Team Foundation Server Express 2012

w Start Page - Microsoft Visual Studio Express 2012 for Windows Desktop
FILE EDIT VIEW DEBUG TEAM TOOLS TEST WINDOW HELP

id @ W P Attach... -

Start Page + X

-

¥0g|00]

GET STARTED

Welcome

What's new
What's new
What's new
What's new
What's new

Recent

in
in
in
in
in

.‘m What's New in Windows Desktop Development
Visual C#

Visual Basic

Visual C++

Windows Presentation Foundation (WPF)

Windows Forms

oﬂ Getting started with Windows Desktop Applications

Learn to build Win32 / Vi

ual C++ applications

Learn to build WPF applicatiens
Learn to build Windows Forms applications

Discover extensions, add-ons and samples

I_U Learning Resources
i} API reference for Win32

A

API reference for WPF applications

API reference for Windows Forms applications
Visual Studic troubleshooting and support
Visual Studio videos on Channel 9

What is an M5DN subscription?

Quick Launch (Ctrl+Q)

Solution Explorer

&

What happens when you write a program?

Source code file -
hello.c, hello._cpp

C preprocessor @

Preprocessed code
file - hello. i

C Conpiler |

Assenbly code
file - hello. s

S

Object code file Felocatiom chject code
- hello.o I infrrrnation
Linkex/link editor ther chjects file/ modules |

Executable code -
hello, hello. exe
[

Stored in secondary
storage sach as hard
disk (hdd) as an
executable image

when mnninglexecute the

program (a process)

Fun tine chjects ! nodules [

/ Libraries (defered livking)

Frocess Address
Space

{IIIII

More reading:
http://www.tenouk.com/ModuleW.html

More Linux/Unix style from the
command prompt

& =& C [cygwincom w| .

Cygwin m
Install Cygwin
Update Cygwin w I
Search Packages

Licensing Terms
Get that Linux feeling - on Windows!

Cygwin/X

Community
Reporting Problems

Maiing Lists This is the home of the Cygwin project

MNewsgroups
Gold Stars Wi
Mirror Sites =
Donations L . .
.15 it? isn't it?
Documentation
FAQ Cwvgwin is: Cvgwin is not:
User's Guide -
AP1 Rek + 3 collection of tools which provide a Linux look + 3 wav to run native Linux apps on Windows. Tou
SIEISHEE and feel environment for Windows. mmst rebuild vour application from sowrce if vou
Acronyms want it to run on Windows.
- « aDLL (cygwinl dll) which acts as a Limm APT + away to magically make native Windows apps
Contributing layer providing substantial Linux APT aware of UNIX® functionality like signals, ptys, etc.
Snapshots functionality. Again, vou need to build vour apps from source if
Source in CV5 vou want to take advantage of Cyvgwin functionality.
Cygwin Packages
B The Cygwin DLL currently works with all recent. commercially released x86 32 bit and 64 bit versions of Windows.
Red Hat Cygwin Product with the exception of Windows CE and Windows NT4.

For more information see the FAQ.

First Program, “Hello World!”

<iostream>
using namespace std;
int main() {
cout <<"Hello World!"<<endl;
return 0;

.g++ HE]]DnDrld cpp -0 HE]]DWDP]d.ExE

#.cat HE110nDr1d cpp
#include «<i1ostream=
using namespace std;

int main() {

cout <<"Hello World!"<<end];
return 0;

. EHE1lnnnr1d EHE.
Hello World!

#include <stdafx.h>
#include <stdio.h>
static void display(int i, int *ptr);

int main(void)
{
int x = 5;
int *xptr = &x;
printf("In main() program:\n");
printf("x value is %d and is stored at address %p.\n", x, &x);
printf("xptr pointer points to address %p which holds a value of %d.\n", xptr, *xptr);
display(x, xptr);
return 0;

void display(int y, int *yptr)
{
char var[7] = "ABCDEF";
printf("In display() function:\n");
printf("y value is %d and is stored at address %p.\n", y, &y);
printf("yptr pointer points to address %p which holds a value of %d.\n", yptr, *yptr);

Program 1-1

1 f/ This program calculates the user's pay.
2 #include <iostream>
3 using namespace std;

<
5 int main()
B |
7 double hours, rate, pay;
9 f// Get the number of hours worked.
10 cout << "How many hours did you work? ";
11 cin >> hours:
13 f/ Get the hourly pay rate.
14 cout << "How much do you get paid per hour? ";
15 cin >> rate:
17 f/ Calculate the pay-
18 pay = hours * rate;
20 f{ Display the pay.
21 cout << "You have earned $" << pay << endl;
22 return 0;
23}

Program Output with Example Input Shown in Bold
How many hours did you work? 10 [Enter]

How much do you get paid per hour? 15 [Enter]
You have earned 5150

e S0tir0e code {5 entered
with a text editor by

the programmer.

fHpclude <iocstreamr

using namaspace std;
Preprocessor

' int mainl]

— L cout<*Haello Worldin®™;
Modified raturn {7
Source Code

.

Compiler

1

‘ Object Code ‘

1

Linker

Executable Code

Table 2-1

Special Characters

Character Name

Description

rf

Double slash
Pound sign
Opening and closing brackets

Opening and closing parentheses
Opening and closing braces

Opening and closing quotation marks

Semicolon

Marks the beginning of a comment.
Marks the beginning of a preprocessor directive.

Encloses a filename when used with the
#include directive.

Used in naming a function, as in int main()
Encloses a group of statements, such as the
contents of a function.

Encloses a string of characters, such as a message
that is to be printed on the screen.

Marks the end of a complete programming
statement.

C++ keywords

This is a list of reserved keywords in C++. Since they are used by the language. these keywords are not available for re-
definition or overloading.

alignas (since C++11) |enum e
alignof (since c++11) |explicit short

and export(i) signed
and_eq extern sizeof

asm false static
auto(u) float static_assert (since C++11)
bitand for static_cast
bitor friend struct

bool goto switch
break 1f template
case inline this

catch int thread local isince c+411)
char long throw
charl6_t (since c++11) |mutable true
char32_t (since C++11) |Namespace try

class new typedef
compl noexcept (since C++11)| typeid
const not typenames
constexpr (snce C++11)| not_eq union

const cast nullptr (since c++11) |unsigned
continue operator using(i)
decltype (since C++11) |OF virtual
defaultiy or_eq vold
delete(n private volatile

1o protected wchar_t
double public while
dynamic_cast register Xor

else - reinterpret_cast |xor_eq

« (1) - meaning changed in C++11

In addition to keywords, there are two igentiiers with special meaning. which may be used as names of objects or
functions, but have special meaning in certain contexts.

override (C++11)
final (c++11)

Operators in C++ and operator precedence

Level Operator Description Grouping
1 scope Left-to-right
() [1.->++ -- dynamic_cast
2 static_cast reinterpret_cast |postfix Left-to-right
const_cast typeid
++ -- ~ I sizeof new delete unary (prefix)
3 x g indirection and reference Right-to-left
(pointers)
+- unary sign operator
4 (type) type casting Right-to-left
5 * o>k pointer-to-member Left-to-right
6 */ % multiplicative Left-to-right
7 +- additive Left-to-right
8 << >> shift Left-to-right
9 <><=>= relational Left-to-right
10 === equality Left-to-right
11 & bitwise AND Left-to-right
12 A bitwise XOR Left-to-right
13 | bitwise OR Left-to-right
14 && logical AND Left-to-right
15 | logical OR Left-to-right
16 ?: conditional Right-to-left
17 i:*T:/: %= 4= = o>= <<= & assignment Right-to-left
18 , comma Left-to-right

More online at: Operator Precedence and Associativity
msdn.microsoft.com/en-us/library/126fel4k.aspx

<? NOTE: The data type sizes and ranges shown in Table 2-6 are typical on many systems.

Depending on your operating system, the sizes and ranges may be different.

Table 2-6 Integer Data Types, Sizes, and Ranges

Data Type Size Range

short 2 bytes -32,768 to +32,767

unsigned short 2 bytes 0 o +65,535

int 4 bytes -2,147,483,648 to +2,147,483,647
unsigned int 4 bytes 0 to 4,294,967,295

long 4 bytes -2,147,483,648 to +2,147,483,647
unsigned long 4 bytes 0 to 4,294,967,295

using namespace std;

Programs usually contain several items with unique names. In this chapter you will learn
to create variables. In Chapter 6 you will learn to create functions. In Chapter 13 you will
learn to create objects. Variables, functions, and objects are examples of program entities
that must have names. C++ uses namespaces to organize the names of program entities.
The statement using namespace std; declares that the program will be accessing enti-
ties whose names are part of the namespace called std. (Yes, even namespaces have
names.) The reason the program needs access to the std namespace is because every name
created by the iostream file is part of that namespace. In order for a program to use the

entities in iostream, it must have access to the std namespace.

Namespaces allow to group entities like classes, objects and
functions under a name. This way the global scope can be
divided in "sub-scopes", each one with its own name.

#include "stdafx.h"
#include <iostream>
#include <string>
using namespace std;
int exit();

class Car
{ -
private:
int Year;
string Make;
int Speed;
public:
Car(int, string,
int getYear();
string getMake();
int getSpeed();
int Accelerate();
void getDisplay(Q);
int Brake();
};
Car:Car(intYr =0, string Mk="", int Spd = 0) {
Year =Yr;
Make = Mk;
Speed = Spd;
}
int Car::getYear()
{
cout << "Enter the year of the car:
cin >> Year;
return Year;
3

string Car::getMake()

cout << "Enter the make and model of the car:

cin >> Make;
return Make;
3
int Car::getSpeed()
{

cout << "Enter the speed of the car:

cin >> Speed;
return Speed;

int Car::Accelerate()

{
Speed = Speed + 5;
return Speed;

}

int Car::Brake()

{
Speed = Speed - 5;

return Speed;

}

void Car::getDisplay(Q)

{

int choice;

cout << "The car is a " << getYear() <<
getMake() << " going " << getSpeed() << " MPH." << endl;
Car car(getYear(), getMake(), getSpeed());

do

{
cout
cout
cout
cout
cout
cout
cout

<<
<<
<<
<<
<<
<<
<<

1. Accelerate
2. Brake
3. Exit

"\nEnter your choice:
cin >> choice;

<<
<<
<<
<<
<<
<<
<<

<<

endl;
endl ;
endl;
endl;
endl;
endl;
endl;

switch (choice)

{
case 1: cout << "Accelerating’;
cout << car.Accelerate();
break;
case 2: cout << "Braking";
cout << car.Brake();
break;
case 3: cout << "Exiting Program';
exit();
break;
while (choice < 1 || choice > 3)
{
cout << "\nYour choice must be 1-3. Re-enter.\n" << endl;
cout << "' Menu " << endl;
cout << Mmoo " << endl;
cout << " 1. Accelerate " << endl;
cout << " 2. Brake " << endl;
cout << " 3. Exit " << endl;
cout << Mmoo " << endl;
cout << "\nEnter your choice: " << endl;
cin >> choice;
}

} while (choice != 3);

getDisplay();

cout << endl << "Press ENTER to exit...";
cin.clear(Q):

cin.sync(Q);

cin.get();

return O;

Reading from binary and text files

Text files

Text file streams are those where we do not include the ics: :kinary flag in their opening mode. These files are
designed to store text and thus all values that we input or output from/to them can suffer some formatting
transformations, which do not necessarily correspond to their literal binary value.

Data output operations on text files are performed in the same way we operated with cout:

S/ writing on a text file [file example.txt]
#include <iostream> Thiz iz a line.
#include <fstream> This is another line.

using namespace 3td;

int main () {
gfstream myfile ("example.txt™):;
if (myfile.is open())
1

myfile << "This is & line.\n";

myfile << "This is ancther line.‘\n";
myfile.close():
}
else cout << "Unable to open file™;
return 0;

!

Checking state flags

In addition to good (), which checks whether the stream is ready for input/output operations, other member
functions exist to check for specific states of a stream (all of them return a bool value):

bad()
Returns true if a reading or writing operation fails. For example in the case that we try to write to a file that
is not open for writing or if the device where we try to write has no space left.

fail(}
Returns true in the same cases as bad(), but also in the case that a format error happens, like when an
alphabetical character is extracted when we are trying to read an integer number.

eof()

Returns true if a file open for reading has reached the end.

good()
It is the most generic state flag: it returns false in the same cases in which calling any of the previous
functions would return tre.

In order to reset the state flags checked by any of these member functions we have just seen we can use the
member function clear (), which takes no parameters.

More at: http://www.cplusplus.com/doc/tutorial/files/

Data input from a file can also be performed in the same way that we did with cin:

// reading a text file This iz a line.
#include <iostream This iz another line.
#include <fatream>
#include <string>
using namespace 3td;

int main) I
3tring line;

9| ifstream myfile ("example.txt");

10| if (myfile.is openf{))

OO =] & O W= L Ra =

11|
12 while [myfile.good({) }

13 I

14 getline (myfile,line);

15 cout << line << endl;

16 1

17 myfile.close():

18| }

15

20| else cout << "Unable to open file™;
21

£2| return 0;

Return statement and functions

Terminates the execution of a function and returns control te the calling function (or, in the case of the main function, transfers control back to the

operating system), Execution resumes in the calling function at the point immediately fellowing the call.

return [expression]

4 Remarks

The value of expression, if present, is returned to the calling function. If expression is omitted, the return value of the function is undefined.
Functions of type woid, constructors, and destructors cannot specify expressions in the return statement; functions of all other types must specify

an expression in the return statement,

The expression, if specified, is converted to the type specified in the function declaration, as if an initialization were being performed. Conversion
from the type of the expression to the return type of the function can cause temporary objects to be created. See Temporary Objects for more

informaticn about how and when temporaries are created.

When the flow of control exits the block enclosing the function definition, the result is the same as it would be if a return staterment with no

expression had been executed. This is illegal for functions that are declared as returning a value,
Afunction can have any number of return staternents.

The following example uses an expression with return to obtain the largest of two integers,

4 Example

S return_statement2.cpp
#include <stdio.h>

int max { int a, int b)

1
return { a *» b 2 a : b)
¥
int maini)
1
int nQne = 5;
int ATwo = 7;

printf_s{"wn¥d iz bigger‘n", max{ nlne, nTwo 1);

Control Structures

Conditional structures
Iteration structures
Jump statements
Selective structure

Conditional structure: if and else
The if keyword is used to execute a statement or block only if a condition is fulfilled. Its form is:

if (condition) statement

Where cenditicn is the expression that is being evaluated. If this condition 15 true, statement is executed. If it is
false, statement is ignored (not executed) and the program continues right after this conditional structure.
For example, the following code fragment prints x iz 100 only if the value stored in the x variable is indeed 100!

if (x == 100}
cout << "x is 100™;

If we want more than a single statement to be executed in case that the condition is true we can specify a block
using braces | }:

if (x == 100}

f

cout << "k is ";
cout << X7

We can additionally specify what we want to happen if the condition is not fulfilled by using the keyword el1se. Its
form used in conjunction with i£ is:

1f {condition) statementl else statement?

For example:

if (x == 100}
cout << "x is 1007;
else

cout << "X i3 not 100™;

prints on the screen x is 100 if indeed x has a value of 100, but if it has not -and only if not- it prints out = i3 not
100,

The if + else structures can be concatenated with the intention of verifying a range of values. The following
example shows its use telling if the value currently stored in xz is positive, negative or none of them (i.e. zero):

if (x > 0)

cout << "X i3 positiwve™;
else if (x < 0)

cout << "x i3 negatiwve™:
elze

cout << "x is 0";

Remember that in case that we want more than a single statement to be executed, we must group them in a block
by enclosing them in braces { 1.

Iteration structures (loops)

Loops have as purpose to repeat a statement a certain number of times or while a condition is fulfilled.

The while loop
Its format is:

while ({expression) statement

and its functionality is simply to repeat statement while the condition set in expression is true.
For example, we are going to make a program to countdown using a while-loop:

S/ custom countdown using while Enter the starting number > &
g, 7, 6, 5, 4, 3, 2, 1, FIEE!

#include <iostream>

13ing namespace 3td:

int main ()

i
int n;
cout << "Enter the 3starting number > ";
cin >> n;

while (n>0) |
cout << n << ", ";

cout << "FIRE!“.n";
return 0;

When the program starts the user is prompted to insert a starting number for the countdown. Then the while loop
beqgins, if the value entered by the user fulfills the condition o0 (that n is greater than zero) the block that follows
the condition will be executed and repeated while the condition (n»0) remains being true.

The do-while loop

Its format is:
do statement while (condition);
Its functionality is exactly the same as the while loop, except that condition in the do-while loop is evaluated after

the execution of statement instead of before, granting at least one execution of statement even if condicicon is
never fulfilled. For example, the following example program echoes any number yvou enter until you enter o.

// number echoer Enter number {0 to end): 12345
You entered: 12345
¢include <iostream» Enter number (0 to end): 160277
using namespace 3td; You entered: 160277
Enter number (0 to end): 0
int main () You entered: 0

f

unaigned long n:

do |
cout << "Enter number {0 to end): ";
cin >> n;
cout << "¥You entered: " << n << "\n":

} while (n !'= 0);

return 0;

The do-while loop is usually used when the condition that has to determine the end of the loop is determined
within the loop statement itself, like in the previous case, where the user input within the block is what is used to
determine if the loop has to end. In fact if you never enter the value 0 in the previous example you can be
prompted for more numbers forever.

The for loop

Its format is:
for (initialization; condition; increase) statement;

and its main function is to repeat statement while conditicn remains true, like the while loop. But in addition, the
for loop provides specific locations to contain an initizlizaticn statement and an increase statement. So this

loop is specially designed to perform a repetitive action with 3 counter which is initialized and increased on each

iteration.

It works in the following way:

1. initializaticn I5 executed. Generally it is an initial value setting for a counter variable. This 15 executed only
once.
2. condition is checked. If it is true the loop continues, otherwise the loop ends and statement is skipped (not

executed).
statement is executed. As usual, it can be either a single statement or a block enclosed in braces [1.

. finally, whatever 15 specified in the increase field is executed and the loop gets back to step 2.

o Ld

Here 15 an example of countdown using a for loop:

S/ countdown using a for loo 10, 49, &, 7, &, 5, 4, 3, 2, 1, FIEE!
#include <iocstream>

using namespace std;

int main ()

{
for (int n=10; n>0; n--) |
cout €< n << ", "r
1
cout << "FIRE!':\n":
return 0;

The initizlizaticn and increase fields are optional. They can remain empty, but in all cases the semicolon signs
between them must be written. For example we could write: for (:n<l0;) if we wanted to specify no initialization
and no increase; or for (;n<li;n++) if we wanted to include an increase field but no initialization (maybe because
the variable was already initialized before).

Optionally, using the comma operator (,) we can specify more than one expression in any of the fields included in a
for loop, like in initizlizaticn, for example. The comma operator (,) is an expression separator, it serves to
separate more than one expression where only one is generally expected. For example, suppose that we wanted
to initialize more than one variable in our loop:

for (n=0, i=100 : n'=i ; n++, i——)

{

S/ whatewver here...

}

This loop will execute for 50 times if neither o or 1 are modified within the loop:

p Initidlization

v Corditiok

[
for (|(n=0, i=100|;|n'=i|;|n++, i--|}

. .
- -

Increase
n starts with a value of 0, and 1 with 100, the condition is n'=1i (that o is not equal to i). Because n is increased by
one and i decreased by one, the loop's condition will become false after the 50th loop, when both o and 1 will be
equal to 50.

Jump statements.

The break statement

Using break we can leave a loop even if the condition for iks end is not fulfilled. It can be used to end an infinite

loop, or to force it to end before its natural end. For example, we are going to stop the count down before its
natural end (maybe because of an engine check failure?):

—

Arrays, Vectors, and Lists

Arrays

The oldest example of a Container in C++ is an arrav. In C vou had arravs and vou would write code like this:
const int MAX = 10;

float a[MAX]:

Arravs are like vectors except that:

They have a fixed size specified in the declaration.
Thev are faster than vectors.
You can not add or delete items firom an avray.

B

The syntax is simpler.,
The absolutely no safetv belt: if an index has wrong value, vou crash.

:-.-'l

C++ Array Size: The Size of an Array in C++

Short answer: use sizeof(array)/sizeof(element type).

For example: sizeof(scores)/sizeof(int), where scores is an array of ints.
This does not work with pointers.

#include <iostream>

using namespace std;

int main(int argc, char *argv[])

{

// Multidimensional array of numbers.
// We need to specify sizes for

// all except the first dimension.

#include <string> int numbers[][3] =
#include <algorithm> {
#include <iostream> {e, 1, 2},
using namespace std; {3, 4, 5}
bool sort_strings(const string& a, const string& b) }s
{ for(int row=0; row < 2; row++){
return a < b; for(int col=0; col < 3; col++){
} cout << numbers[row][col] << endl;
int main(int argc, char *argv[])) }
{
// Declare and initialize an array of strings. }
string strings[] = {
"Fox", OUTPUT:
"Beetroot", 0
"Zebra", 1
"Aardvark", 2
"Cabbage" 3
}s 4
5

// Sort the array with STL sort.
sort(strings, strings + 5, sort_strings);
for(int i=0; i < sizeof(strings)/sizeof(string); i++)

{
}

cout << strings[i] << endl;

}

OUTPUT:
Aardvark
Beetroot
Cabbage
Fox
Zebra

Arrays, Vectors, and Lists

Vectors

The STL vector class provides functionality similar to that of C arrays. Vectors are contiguous array of elements where the the first "size”
elements are constructed (initialized) and the last "capacity - size” elements are uninitialized.

allocator
data /

— 8lZe ——

- capacity -

Vectors may be implemented by providing a pointer to an array allocated on the heap, but this is not guaranteed by the standard. Unlike C
arrays, vectors are expandable. Expanding a vector beyond its current capacity causes the vector elements to be copied to a larger array
also allocated on the heap.

Wectors share a major vulnerability with arrays; as vectors perform no bounds-checking on cperatoxr []. However, the vectoxr: rac ()
method performs index retrieval and assignment with range checking; it throws an cut_of range exception if the index provided is
outside the vector's range.

A vector may be initialized directly by the constructor:

A vector may be initialized directly by the constructor:

for (size t i = ®; 1 ¢ dat.size(); i++) {
dat[i] = 42; /* Assigns 42 to each element; */

. for (vector<int>::iterator i = dat.begin(); i != dat.end(); i++) {
' *i = 42; /* Assigns 42 to each element; */ :

The relationship between array subscripts and pointers also applies to vector 'subscripts’ and iterators.

/*

Suppose that we want to input an unknown number of numbers and then
print them out forwards and then backwards, using a vector. We will

push ints onto the back of a vector called v. We will then print

each item in v in turn. Finally we will print the vector backwards.

You can download the code from [Vector.cpp] but here are the
highlights. First we must declare the facilities we want to use */

#include <iostream>

#include <vector>

using namespace std;

void print(const vector<int>&) ;//utility function outputs a vector of ints
void print_backwards(const vector<int> &);

/*Then we describe the main program: */

int main() {

}//main

vector<int>v;
int number;
cout <<"Input some numbers and then end the input\n";
while(cin>>number){
v.push_back(number);
}//while(more)
print(v);
print_backwards(v);

/* Finally the two procedures that print out the data: */
void print_backwards(const vector<int> &a) {

for(int i=a.size()-1; i>=0; --i)
cout<<ali]<<"";

cout << endl;

cout << Memmmmee oo "<<end|;

}//print_backwards
void print(const vector<int>& a)

{

}/print

for(int i=0; i<a.size(); ++i)
cout<<ali]<<"";

cout << endl;

cout << Memmmmeem - "<<end|;

Wectors are good when we have an unknown sequence of similar items to store and we want to access them by their sequence numbers.

Wectors are held in a special library and can be used in a file that has
#¥include <vector>

at its beginning. It uses the "std" namespace so vou will need "using .._;" statements.

Table

Declaration|[vector<type> v(initial size);

Accessors |[v.emptv(), v.size(), v front(), v.back()
Mutators |[vpush _back(T), v.pop_back()

|Dperat0r5 ||‘f-'[i:r1t]= v.at(int), vl=vl;, vi==vl |

(Close Table)

Key Facts

You need to remember the following facts about vectors:

1. A vecroris an object that conrains a seguence of other objects inside it.
2. The objects inside must all take up the same amount of storage.
3. They are numbered stavting with 0.
4. If the whole vector is called v then the items in it are written v/ 0] v/I]. vf2]. .
5. The last item is v/v.size()-1] NOT v[v.size()].
6. MNew items can be "pushed" onto the end of the vector.
7. The last item can be "popped" off of a vector.
8. WVectors can therefore change size.
9. We can find out the current size of a vector: v.size()
10. Vectors can be empty. If so v.empty() is true.
11. If a vector is empty then v[i] and v pop.... crash.
12. Vectors are empty. by default, when created.
13. Vectors shouls be passed by reference whenever possible.

Details

Suppose that T is any tvpe or class - say int, float. double, or the name of a class, then

vector<I> Ww;

declares a new and empty vector called v. Given object v declare like the above vou can do the following things with it
® fest to see if v is empiy:

V.empty ()
v find how mary items are i v
wv.zizel()
" pushtin T onto the end of v:
v.push kack(t)
» pop the back af v aoff v:
v.pop back()
» Acress the i'th item (0<=i<size()) without checking to see if it exists:
v[il
Assign a copy of vi to v

w o= 7l

List

// constructing lists
#include <iostream>
##tinclude <list>

int main ()

{

// constructors used in the same order as described above:

std
std
std
std

::listcint> first;

::1list<int> second (4,100);

::list<int> third (second.begin(),second.end());
::1list<int> fourth (third);

// empty list of ints

// four ints with value 100
// iterating through second
// a copy of third

// the iterator constructor can also be used to construct from arrays:

int

myints[] = {16,2,77,29};

std::1list<int> fifth (myints, myints + sizeof(myints) / sizeof(int));

std::cout << "The contents of fifth are: ";

for (std::list<int>::iterator it = fifth.begin(); it != fifth.end(); it++)
std::cout << *it << " ';

std::cout << '\n';

return 0;

4 Methods

& X
& X
& X

o Xl

DW(TE

& Xl

& i
& X
@ X

& i
& X

DW(TE

Using the MSDN to find the methods of class list: List<T> Class
(http://msdn.microsoft.com/en-us/library/6sh2ey19.aspx)

Represents a strongly typed list of objects that can be accessed by index. Provides
methods to search, sort, and manipulate lists.

Name

Add
AddRange
AsReadCnly

BinarySearch(T)

BinarySearchiT,
IComparer<T=])

BinarySearch(Int32, Int32, T,
IComparer<T=])

Clear
Contains

ConvertAll=TOutput=

CopyToe(T[])

CopyTe(T[], Int32)

CopyTo(nt32, T[], Int32,

Description

Adds an chject to the end of the List<T=,
Adds the elements of the specified collection to the end of the List<T=,
Returns a read-only IList<T> wrapper for the current collection.

Searches the entire sorted List<T= for an element using the default comparer and returns the zero-based index
of the element.

Searches the entire sorted List<T= for an element using the specified comparer and returns the zero-based
index of the element.

Searches a range of elements in the sorted List=T= for an element using the specified comparer and returns
the zero-based index of the element,

Remowves all elements from the List<T=,
Determines whether an element is in the List<T=,

Converts the elernents in the current List=T= to another type, and returns a list containing the converted
elements,

Copies the entire List<T> to a compatible one-dimensional array, starting at the beginning of the target array.

Copies the entire List<T> to a compatible ene-dimensicnal array, starting at the specified index of the target
array.

Copies a range of elements from the List<T= to a compatible one-dimensional array, starting at the specified

First Program, “Hello World!”

<iostream>
using namespace std;
int main() {
cout <<"Hello World!"<<endl;
return 0;

.g++ HE]]DnDrld cpp -0 HE]]DWDP]d.ExE

#.cat HE110nDr1d cpp
#include «<i1ostream=
using namespace std;

int main() {

cout <<"Hello World!"<<end];
return 0;

. EHE1lnnnr1d EHE.
Hello World!

